Surface Areas and Volumes(Class-9,Math) / Quiz / By gyanpur Please enter your email: 1. If the perimeter of one of the faces of a cube is 40 cm, then its volume is: (a) 6000 cm³ (b) 1600 cm³ (c) 1000 cm³ (d) 600 cm³ 2. If the perimeter of one of the faces of a cube is 40 cm, then its volume is: (a) 6000 cm³ (b) 1600 cm³ (c) 1000 cm³ (d) 600 cm³ 3. A cuboid having surface areas of 3 adjacent faces as a, b and c has the volume: (a) 3abc−−−√ (b) abc−−−√ (c) abc (d) (abc)² 4. The radius of a cylinder is doubled and the height remains the same. The ratio between the volumes of the new cylinder and the original cylinder is (a) 1 : 2 (b) 3 : 1 (c) 4 : 1 (d) 1 : 8 5. Length of diagonals of a cube of side a cm is (a) √2a cm (b) √3a cm (c) 3a−−√ cm (d) 1 cm 6. Volume of spherical shell is (a) 23 πr³ (b) 34 πr³ (c) 43 π(R³ – r³) (d) None of these 7. Volume of hollow cylinder (a) π(R² – r²)h (b) πR²h (c) πr²h (d) πr²(h1 – h1) 8. The radius of a sphere is 2r, then its volume will be (a) 43 πr³ (b) 4πr³ (c) 83 πr³ (d) 323 πr³ 9. In a cylinder, radius is doubled and height is halved, curved surface area will be (a) halved (b) doubled (c) same (d) four time 10. The total surface area of a cone whose radius is r2 and slant height 2l is (a) 2πr(l + r) (b) πr(l + r4) (c) πr(l + r) (d) 2πrl 11. The radius of a hemispherical balloon increases from 6 cm to 12 cm as air is being pumped into it. The ratios of the surface areas of the balloon in the two cases is (a) 1 : 4 (b) 1 : 3 (c) 2 : 3 (d) 2 : 1 12. The length of the longest pole that can be put in a room of dimension (10 m × 10 m × 5 m) is (a) 15 m (b) 16 m (c) 10 m (d) 12 m 13. The lateral surface area of a cube is 256 m³. The volume of the cube is (a) 512 m³ (b) 64 m³ (c) 216 m³ (d) 256 m³ 14. The radii of two cylinders are in the ratio of 2 : 3 and their heights are in the ratio of 5 : 3. The ratio of their volumes is (a) 10 : 17 (b) 20 : 27 (c) 17 : 27 (d) 20 : 37 15. The total surface area of a cube is 96 cm². The volume of the cube is (a) 8 cm³ (b) 512 cm³ (c) 64 cm³ (d) 27 cm³ Loading …